Activated propionates

We investigated the ability of AMP-activated protein kinase (AMPK) to activate PPARgamma coactivator-1alpha (PGC-1alpha) in the brain, liver and brown adipose tissue (BAT) of the NLS-N171-82Q transgenic mouse model of Huntington's disease (HD). In the striatum of the HD mice, the baseline levels of PGC-1alpha, NRF1, NRF2, Tfam, COX-II, PPARdelta, CREB and ERRalpha mRNA and mitochondrial DNA (mtDNA), were significantly reduced. Administration of the creatine analog beta guanidinopropionic acid (GPA) reduced ATP and PCr levels and increased AMPK mRNA in both the cerebral cortex and striatum. Treatment with GPA significantly increased expression of PGC-1alpha, NRF1, Tfam and downstream genes in the striatum and cerebral cortex of wild-type (WT) mice, but there was no effect on these genes in the HD mice. The striatum of the untreated HD mice showed microvacuolation in the neuropil, as well as gliosis and huntingtin aggregates, which were exacerbated by treatment with GPA. GPA treatment produced a significant increase in mtDNA in the cerebral cortex and striatum of WT mice, but not in HD mice. The HD mice treated with GPA had impaired activation of liver PGC-1alpha and developed hepatic steatosis with accumulation of lipids, degeneration of hepatocytes and impaired activation of gluconeogenesis. The BAT in the HD mice showed vacuolation due to accumulation of neutral lipids, and age-dependent impairment of UCP-1 activation and temperature regulation. Impaired activation of PGC-1alpha, therefore, plays an important role in the behavioral phenotype, metabolic disturbances and pathology of HD, which suggests the possibility that agents that enhance PGC-1alpha function will exert therapeutic benefits in HD patients.

Construction of 3-vinylindoles (3) and β,β-diindolyl propionates (4) through solvent-free C-H functionalization has been explored under high-speed ball-milling conditions. The reaction selectivity is influenced by the catalyst dramatically: Pd(OAc)2 provides 3 in moderate to good yields, whereas PdX2 (X = Cl, I) affords 4 as the major products. The reaction mechanism has been further studied by using electrospray ionization mass spectrometry, implicating the dimeric palladium complex A as the key intermediate in an explanation of the selectivity.

Ludwig Knorr was a student of Emil Fischer who won the Nobel Prize for his work on purines and sugars, which included the discovery of phenylhydrazine . [3] [13] In the 1880s, Knorr was trying to make quinolone derivatives from phenylhydrazine, and instead made a pyrazole derivative, which after a methylation, he made into phenazone , also called antipyrine, which has been called "the 'mother' of all modern antipyretic analgesics." [3] [14] :26–27 Sales of that drug exploded, and in the 1890s chemists at Teerfarbenfabrik Meister, Lucius & Co. (a precursor of Hoechst AG which is now Sanofi ), made another derivative called pyramidon which was three times more active than antipyrine. [3]

Activated propionates

activated propionates


activated propionatesactivated propionatesactivated propionates